Gaining momentum in science and industry, electron diffraction will help to overcome existing limitations for the analysis of nano-crystalline systems.
ELDICO Scientific – The Electron Diffraction Company – is a Swiss deep tech company founded in 2019. ELDICO develops, produces and sells electron diffractometers for the analysis of solid compounds enabling industrial and scientific researchers to characterise hitherto unmeasurable nano-crystalline systems.

The proof of concept was achieved in 2018 (ETH Zurich, C-CINA Basel) on scientifically and industrially relevant samples. Results published recently (Angewandte Chemie, International Edition) gained significant attention and were nominated for “Breakthrough of the Year 2018” by SCIENCE.

Since then, we have successfully built a development organisation. Today more than 20 technical experts and developers from 5 industrial partners, among world leading engineering companies as well as leading component suppliers, work closely together to bring the first dedicated electron diffractometer to market.

Shaping the Future of Crystallography means for us: We support academic and industrial scientists to obtain relevant structural information faster, with better quality and at lower cost.
What the Future of Electron Diffraction looks like

In an article on crystallography and electron diffraction[1], the innovative potential of new crystallographic methods such as electron, neutron and synchrotron radiation has clearly been recognized. These techniques are now making it possible to study atomic structures of previously inaccessible crystalline solids. In addition to the performance of new detector systems, the benefit from increased computing power and the Cambridge Structural Database (CSD) containing one million crystal structures allowing data to be used in ways that would have been unimaginable in the past, the article emphasizes the role of electron diffraction.

Addressing the availability of sufficiently large crystals as one of the main (and well known) bottlenecks, the author sees electron diffraction and quantum crystallography to have enormous potential: one current development is the structure elucidation of nanocrystalline molecular compounds by electron diffraction. Thanks to a combination of a hybrid pixel detector with a transmission electron microscope, it is now possible to determine the structure of single crystals as small as a few tens of nanometres.

We believe that the need for a still-very-expensive (and in our view not-very-suitable) microED device, which is mainly an electron
microscope, will be the next bottleneck further down the road towards a swift and accurate analysis of nanocrystalline samples. Moreover, these experiments are not within reach for the majority of crystallographers, forcing scientists around the world to rely on data from alternative sources.

ELDICO’s dedicated electron diffractometer is a well advanced instrument concept that will enable analysis of nano-sized solid compounds. Organic chemists will be among the first users to learn about and appreciate the advantages of this disruptive technology. We are currently indialogue with many user groups and are finding a keen awareness of the methodology itself as well as great interest in our instrument concept that will beat the «retrofitted» electron microscopes in terms of usability, quality, time to obtain data and – last but not least – in cost.

Dr. Eric Hovestreydt
Founder and CEO of ELDICO Scientific

« ... an interesting opportunity (...) for detailed 3D structure analysis on compounds presently impossible to measure, e.g. nano-sized zeolites.»
Jamie Yang, Huub Kooijman Ralph Haswell, Shell, Global Solutions International B.V., Amsterdam/NL

«ELDICO Scientific has found means to address the most pressing problems of using conventional TEMs for electron crystallography»
Prof. Dr. Christian W. Lehmann, FRSC, MPI für Kohlenforschung, Mülheim an der Ruhr/DE

References:
Electron Diffraction (ED) is gaining momentum in science and industry. The application of ED for performing nano-crystallography is a disruptive innovation, that will open fascinating new perspectives in particular for organic compounds required in the fields of chemical, pharmaceutical and advanced materials research.

Other than transmission electron microscopes (TEM), the ELDICO device is dedicated solely to ED, allowing to outperform TEM in diffraction by delivering results at better quality & more reliably and – by making preparative chemistry (i.e. crystallization) obsolete – much faster at significantly lower investment.

The ELDICO Electron Diffractometer
Shaping the Future of Crystallography with better quality, faster and at lower cost: Electron diffraction eliminates the crystal size problem by entering the sub-μm regime. The ELDICO Scientific Electron Diffractometer is designed to measure samples in the nanometer range of organic and inorganic compounds and is targeted to achieve in the majority of cases a resolution of up to 0.84 Å with at least 60-70% complete datasets having an Rint <20%. Those data will typically allow for structure solution and refinement down to R1 values <10% in 75% of cases. Unit cell determination can be accurate to 1: 1’000.
Specifications

THE SYSTEM CONSISTS OF:

- An electron gun with HV supply

<table>
<thead>
<tr>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emitter</td>
</tr>
<tr>
<td>Acceleration</td>
</tr>
<tr>
<td>Beam Size</td>
</tr>
</tbody>
</table>

- Column with electron-optical system

<table>
<thead>
<tr>
<th>Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
</tr>
<tr>
<td>Field of view</td>
</tr>
<tr>
<td>Dose per Image</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diffraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
</tbody>
</table>

- Sample handling

<table>
<thead>
<tr>
<th>Load-lock system for sample insertion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Rotation</td>
</tr>
<tr>
<td>Speed</td>
</tr>
<tr>
<td>Accuracy</td>
</tr>
<tr>
<td>Sphere of confusion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Goniometer for sample handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
</tr>
<tr>
<td>Number of pixels</td>
</tr>
<tr>
<td>Energy range</td>
</tr>
<tr>
<td>Energy threshold</td>
</tr>
<tr>
<td>Distance to sample</td>
</tr>
</tbody>
</table>

- Detection system

- Software package

- Vacuum system

- Electronics

- Housing

- PC

Requirements

<table>
<thead>
<tr>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>laboratory with standard dimensions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 32A, 3Phase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2 liters / min</td>
</tr>
</tbody>
</table>
Claims

Sample size from 10 to 1000 nm
Radically simplified EM design
Improved goniometer
R_1 below 10%

Proof of concept on organic samples:
New polymorph of a highly active API

Experimental
Tecnai F30 TEM at 200 kV
$\lambda = 0.02508 \text{ Å}$
Dose rate of ~0.01 e−Å−²/s−1
Crystal thickness: ca. 300 nm

Sample A
(confidential)
Known polymorph
Triclinic unit cell

Sample B
(confidential)
New polymorph
Orthorhombic unit cell
Electron Diffraction (ED) is gaining world-wide attention in the crystallography community and is one of the most rapidly developing and exciting fields of crystallography. Over the past two years, every relevant congress or conference dedicated to crystallography, chemistry, material sciences, geology or bio-molecules has featured the topic of ED.

Please find an overview of the most interesting and insightful scientific publications.

«Design guidelines for an electron diffractometer for structural chemistry and structural biology.»

«Electron diffraction of submicron-sized 3D crystals.»
Andreas Förster and Sacha De Carlo, IUCr Newsletter, 2019, 27, 2, 31.

«3D Electron Diffraction: The nano-crystallography revolution.»

«Rapid Structure Determination of Macrocristalline Molecular Compounds using Electron Diffraction.»

«Collecting 3D electron diffraction data by the rotation method.»

«Hydrogen positions in single nanocrystals revealed by electron diffraction.»

«Electron diffraction determines molecular absolute configuration in pharmaceutical nanocrystal.»

«Polymorph evolution during crystal growth studied by 3D electron diffraction.»

«Towards quantitative treatment of electron pair distribution function.»
We are ELDICO Scientific

A strong team with complementary skills. Many years of experience in management, industry and in the scientific field. Excellently suited to master the diverse challenges of the new venture.
Scientific Advisory Board

ELDICO Scientific has appointed a first-class Scientific Advisory Board consisting of pioneers in crystallography and electron microscopy from science and industry, who will support the company in the development of its electron diffractometer.

Ute Kolb, PhD
Head of the Centre for High Resolution Electron Microscopy (EMC-M)
Johannes Gutenberg University
Professor at *Faculty of Materials Sciences and Geo Sciences*
Technical University Darmstadt, Germany

Mauro Gemmi, PhD
Director at the Centre for Nanotechnology
Innovation@NEST of Istituto Italiano di Tecnologia, PISA, Italy

Bernd Hinrichsen, PhD
Head of the XRD, electron microscopy and NMR labs
BASF AG, Ludwigshafen, Germany

Tim Grüne, PhD
Head of the Centre for X-ray Structure Analysis
Faculty of Chemistry, University of Vienna, Austria
Achievements

Supporting Organisations

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 889359.